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This paper investigates finite Reynolds number effects in the problem of the propa-
gation of an air finger into a liquid-filled flexible-walled two-dimensional channel.
The study is motivated by the physiological problem of pulmonary airway reopening.
A fully consistent model of the fluid–structure interaction is formulated and solved
numerically using coupled finite element discretizations of the free-surface Navier–
Stokes equations and the Lagrangian wall equations. It is shown that for parameter
values which are representative of the conditions in the lung and in typical laboratory
experiments, fluid inertia plays a surprisingly important role: even for relatively
modest ratios of Reynolds and capillary numbers (Re/Ca ≈ 5–10), the pressure
required to drive the air finger at a given speed increases significantly compared
to the zero Reynolds number case. Fluid inertia leads to significant changes in the
velocity and pressure fields near the bubble tip and is responsible for a noticeable
change in the wall deformation pattern ahead of the bubble. For some parameter
variations (such as variations in the wall tension), finite Reynolds number effects
are shown to lead to qualitative changes in the system’s behaviour. Finally, the
implications of the result for pulmonary airway reopening are discussed.

1. Introduction
Many pulmonary diseases result in the collapse and occlusion of parts of the lung

with viscous fluid (Pride & Macklem 1986; Macklem, Proctor & Hogg 1970; Hughes,
Rosenzweig & Kivitz 1970). The subsequent airway reopening is assumed to occur
via the propagation of an ‘air finger’ into the collapsed, fluid-filled part of the airway
(Grotberg 1994). The problem has some similarity to the scenario of the ‘first breath’
when air has to enter the fluid-filled airways of a newborn baby for the first time.
Due to the complex nature of the three-dimensional fluid–structure interaction which
governs this problem (a free-surface flow interacting with a strongly collapsed elastic
tube), the mechanics of airway reopening are still poorly understood.

The first experimental study of airway reopening was carried out by Gaver, Samsel
& Solway (1990) who investigated the propagation of an air finger into a strongly
collapsed, thin-walled polyethylene tube which had been filled with oil. The study
determined the propagation speed, U, of the air finger as a function of the applied
bubble pressure, p∗b, and derived estimates of physiological airway reopening times
via scaling arguments. The authors made the interesting observation that, as the
propagation speed U approached zero, p∗b(U) appeared to approach a finite value.
This was interpreted as a yield pressure, i.e. the minimum pressure required to initiate
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the motion of the air finger. The airways of the lung are surrounded by a supporting
network of parenchyma which act as an elastic bedding for the airway walls. The
effect of this ‘parenchymal tethering’ on the airway reopening characteristics was
studied by Yap et al. (1994) and Perun & Gaver (1995).

In the experimental investigations, the extremely thin-walled tubes (of wall-
thickness-to-radius ratios h0/R0 between 1/100 and 1/1000) were flattened with a
metal plate before the tube was reopened. In this strongly collapsed configuration, the
fluid-filled part of the tube has a cross-section of large aspect ratio. This was exploited
in Gaver et al.’s (1996) theoretical and computational study of airway reopening: the
collapsed airway was modelled as an infinitely long two-dimensional channel with
elastic walls under axial tension, supported on an elastic bedding. Reopening of the
channel was assumed to occur by a propagating semi-infinite bubble. Motivated by
the low Reynolds numbers in the experiments, Gaver et al. (1996) restricted them-
selves to zero Reynolds number flows and solved the Stokes equations numerically
by a boundary element method. The channel walls were modelled as spring-backed
‘strings under tension’ and the wall equations were formulated in an Eulerian frame-
work which allowed them to be directly incorporated into the fluid problem. This was
possible because the Eulerian wall model (without bending stiffness) yields a traction
boundary condition for the fluid whose structure is very similar to the dynamic free-
surface condition in the presence of surface tension. Since the Eulerian representation
of the wall mechanics does not trace the paths of material particles on the channel
walls, the velocity boundary conditions for the fluid had to be based on the ad hoc
assumption that the wall particles move normal to the wall’s centreline as the finger
propagates along the channel. Gaver et al. (1996) assumed the initial wall tension to
be so large that any flow-induced changes to the wall tension could be neglected.

Gaver et al. (1996) also developed a lubrication theory approximation for the
problem which was shown to be accurate at low capillary number Ca but failed to
capture some important features at larger Ca. Recently, Jensen, Horsburgh & Gaver
(2000) developed an improved asymptotic model (based on the assumption of large
wall tension and small spring stiffness). This improved model successfully captures
(at least qualitatively) the behaviour at large capillary numbers.

While elucidating many aspects of the fluid–structure interaction governing the
mechanics of airway reopening, Gaver et al.’s (1996) boundary element calculations
are inherently restricted to zero Reynolds number flows. Such flows might be expected
to provide an accurate representation of the fluid mechanics in those experiments
in which high-viscosity fluids were used. However, the Reynolds numbers during
physiological airway reopening can be quite large and the effect of fluid inertia
on the system’s behaviour is not clear. Furthermore, any two-dimensional model of
airway reopening is incapable of capturing some of the essential features of the three-
dimensional system in which an air finger reopens a non-axisymmetrically collapsed
cylindrical tube (see § 4 for further discussion of this point). Gaver et al.’s (1996) wall
model cannot easily be generalized to three dimensions since the inclusion of bending
stiffness (which is necessary to capture the tube’s post-buckling behaviour) produces
wall equations whose structure is significantly different from the ‘standard’ boundary
conditions of fluid mechanics: Hence, in three dimensions, the wall equations cannot
be directly incorporated into the fluid equations.

This paper aims to address both of these problems. The two-dimensional airway
reopening problem is reformulated in terms of a coupled Eulerian Lagrangian fluid–
structure interaction model. The resulting model is fully self-consistent, contains no
ad hoc boundary conditions and can easily be extended to three dimensions. The
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Figure 1. Sketch of the model problem: an air finger propagates into a liquid-filled
two-dimensional channel with elastic walls.

fluid flow is described by the free-surface Navier–Stokes equations which allows finite
Reynolds number effects to be studied. The outline of the paper is as follows. In
§ 2, the model problem and the governing equations are introduced and the finite
element based solution of the fully coupled equations is developed. Section 3.1 re-
considers the system’s behaviour at zero Reynolds number: the results obtained from
the Lagrangian wall model are compared to those from Gaver et al.’s (1996) Eulerian
wall model and the origin of the discrepancies between the two models is discussed.
Section 3.2 investigates the effect of finite Reynolds numbers and identifies the two
main mechanisms by which fluid inertia affects the system’s behaviour. Section 3.3
shows that fluid inertia can lead to qualitative changes of the system’s behaviour in
response to changes in the wall parameters such as the wall tension. Finally, § 4 assesses
the relevance of the results in the context of the pulmonary airway reopening problem.

2. The model
Figure 1 shows a sketch of the model problem to be investigated in this study.

Inside a flexible-walled two-dimensional channel, a positive bubble pressure p∗b drives
an air finger into a fluid of viscosity µ, density ρ and surface tension γ∗. The finger
propagates at a steady speed U and separates the spring-backed elastic walls which
are subject to an axial tension T . Far ahead of and far behind the bubble tip, the walls
are separated by a distance 2H0 and 2W , respectively. Without loss of generality, we
assume that (i) far ahead of the bubble tip, the linear springs are in their stress-free
position and (ii) the external pressure is pext = 0. This implies that the fluid pressure
far ahead of the bubble tip must also tend to zero. Note that assumptions (i) and
(ii) are possible because we assume the channel width 2H0 to be given. Any change
to the springs’ rest position could be compensated for by a corresponding change
to the external pressure and vice versa. Any uncompensated change to pext would
manifest itself in a change to the channel width H0. This is a particular feature of
the two-dimensional problem which is absent in three dimensions. As in Gaver et
al.’s (1996) study, we assume that the system remains symmetric about the channel’s
centreline and only model the lower half of the domain.

2.1. The wall equations

We model the elastic channel walls as pre-stressed elastic beams of thickness h0, sup-
ported on an elastic foundation of stiffness K∗. We describe the beam’s deformation
in terms of its dimensionless centreline displacement v = v∗/H0 which is a func-
tion of the non-dimensional Lagrangian coordinate ξ = ξ∗/H0, measured along the
beam’s centreline. Throughout this paper, a superscript star distinguishes dimensional
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quantities from their non-dimensional equivalents. Time is non-dimensionalized as
t = t∗U/H0 and all lengths are scaled by H0. In a frame moving with the velocity
U of the bubble tip, the non-dimensional position vector to a material point on the
channel wall is then given by Rw(ξ, t) = Rw(ζ) = (ζ + v1(ζ),−1 + v2(ζ)) where v1 and
v2 are the displacement components of material points in the x1- and x2-directions,
respectively. ζ = ξ − t is the non-dimensional Lagrangian travelling wave coordinate.
In the travelling wave frame, the velocity of material points on the wall is given by
∂Rw/∂t = −(1 + v1

,ζ , v
2
,ζ), where subscript commas indicate partial differentiation.

The elastic walls are subject to a large initial tension σ∗0 = T/h0 which is generated
by the force T acting at the far right-hand end of the system. We assume the
additional strain due to the wall’s deformation to be small enough to justify the use
of an incrementally linear constitutive equation, such that σ = σ0 + ε where σ = σ∗/E
is the dimensionless second Piola–Kirchhoff stress, σ0 = σ∗0/E is the dimensionless
pre-stress, E is the incremental Young’s modulus and ε is the geometrically nonlinear
strain ε = v1

,ζ + 1
2
((v1

,ζ)
2 + (v2

,ζ)
2). For thin channel walls, we do not expect wall inertia

to play a significant role in the problem. With these assumptions, the principle of
virtual displacements which governs the wall deformation is given by∫ ∞

−∞

[
(σ0 + ε)δε+

1

12

(
h0

H0

)2

κ δκ

−
(
H0

h0

)
(f · δRw

√
(1 + v1

,ζ)
2 + (v2

,ζ)
2 −Kv2(1 + v1

,ζ)δv
2)

]
dζ = 0, (2.1)

where f = f∗/E is the non-dimensional traction acting on the wall and K =
K∗H0/E is the non-dimensional stiffness of the uniformly distributed springs which are

assumed to remain vertical at all times. κ = (v2
,ζζ(1 + v1

,ζ)− v1
,ζζv

2
,ζ)
/√

(1 + v1
,ζ)

2 + (v2
,ζ)

2

represents the non-dimensional change of curvature of the wall’s centreline. The
physical interpretation of the various terms in (2.1) is as follows: the first two terms
represent the variation in the wall’s strain energy due to its extension and bending,
respectively; the last two terms represent the virtual work done by the fluid traction f
(acting on the deformed wall) and by the uniformly distributed springs, respectively.
A more detailed discussion of the large-displacement beam theory can be found in
Wempner (1973).

Carrying out the variations with respect to the displacements vi and their derivatives
transforms equation (2.1) into a variational equation of the form∫ ∞

−∞
(φ(0)

i δvi + φ
(1)
i δvi,ζ + φ

(2)
i δvi,ζζ) dζ = 0, (2.2)

where the φ-terms contain up to second derivatives of the displacements and the
summation convention is used.

In a finite region surrounding the bubble tip (ζL < ζ < ζR), we discretize this varia-
tional equation by displacement-based finite elements. Since the integrand contains up
to second derivatives of the displacements, we need shape functions with continuous
first derivatives across the element boundaries. Isoparametric Hermite elements with
nodal displacements and slopes as independent degrees of freedom (Bogner, Fox &
Schmit 1967) were chosen such that the displacements vi were interpolated as

vi =
∑
j,k

V ijkψjk, (2.3)
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where the ψjk are piecewise Hermite polynomials. In terms of the local node numbers
and the local element coordinate, s ∈ [0, 1], these shape functions are given by
ψ11(s) = 2s3 − 3s2 + 1, ψ12(s) = s3 − 2s2 + s, ψ21(s) = −(2s3 − 3s2) and ψ22(s) = s3 − s2.
The first index of the shape function ψjk stands for the local node number (j = 1, 2);
the shape function’s second index (k = 1, 2) stands for the type of degree of freedom,
interpolating the displacement or the derivative with respect to the local coordinate
s, respectively.

To generate isoparametric elements, the same shape functions were used to map
the local coordinate s to the global Lagrangian coordinate ζ,

ζ =
∑
j,k

Zjkψjk. (2.4)

Details of the choice of the coefficients Zjk can be found in Heil & Pedley (1996).
We insert (2.3) and (2.4) into (2.2) and obtain{∫ ζR

ζL

(φ(0)
i ψjk + φ

(1)
i ψjk,ζ + φ

(2)
i ψjk,ζζ) dζ

}
δV ijk + ΦijkδV

ijk = 0, (2.5)

where the last term contains the boundary contributions which arise from the trun-
cation of the domain (see the Appendix). The variations of those V ijk which are not
determined by the boundary conditions are arbitrary and the expressions multiplied
by the corresponding δV ijk have to vanish. This provides a system of nonlinear alge-
braic equations for the unknown V ijk . These equations still contain the load terms f,
which have to be determined from the solution of the fluid equations. The integrals
over the elements were evaluated using a three-point Gauss rule.

2.2. The fluid equations

In a frame moving steadily with the velocity U of the bubble tip, the flow is described
by the non-dimensional Navier–Stokes equations

Re uj
∂ui

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)
(2.6)

and the continuity equation

∂ui

∂xi
= 0, (2.7)

where we have scaled the velocities with the bubble velocity, i.e. ui = u∗i /U, and have
used the viscous pressure scale, i.e. p = p∗/(µU/H0). The Reynolds number is defined
as Re = UH0ρ/µ. On the free fluid surface, whose outer unit normal we denote by n,
the fluid normal velocity vanishes,

u · n = 0 on the air–liquid interface, (2.8)

and the dynamic boundary condition implies that

−pni +

(
∂ui

∂xj
+
∂uj

∂xi

)
nj +

1

Ca
κfni = −pbni on the air–liquid interface. (2.9)

κf = κ∗fH0 is the non-dimensional interface curvature and Ca = Uµ/γ∗ is the capillary
number which can be regarded as the non-dimensional bubble velocity.

The numerical technique employed to solve the fluid equations on the variable
domain which is enclosed by the free air–liquid interface and the deforming wall is
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Figure 2. Sketch illustrating the automatic fluid mesh generation. The arrows illustrate the
direction of representative spines in the different regions of the fluid domain.

illustrated in figure 2. In the region ζl < ζ < ζr , the fluid domain is decomposed
into finite elements whose nodal positions are determined by the method of spines
(Kistler & Scriven 1983). For this purpose we parameterize the free-surface position
by its ‘height’ h(ζ) ‘above’ the channel wall. The ‘height’ is measured in the direction
of certain pre-determined unit vectors S (the spines) which emanate from the wall
and from a vertical line (B to D) across the channel. The direction of the spines is
varied as a function of the Lagrangian wall coordinate ζ: away from the bubble tip
(i.e. left of point A and right of point B), the spines point vertically upwards; near
the bubble tip (i.e. between points A and B) the spines point towards a central point
(point C, which is located vertically above point A) on the channel’s centreline. As
the wall deforms, points A and B remain attached to the same material points on the
wall. Since the spines emanate from given material points on the wall, we can use the
Lagrangian wall coordinate ζ to parameterize the free surface as

Rh(ζ) = Rw(ζ) + h(ζ)S(ζ). (2.10)

The spines not only resolve the free-surface position but also facilitate the automatic
adjustment of the fluid mesh to changes in the fluid domain. We associate each nodal
point j in the fluid mesh with a fixed material point on the channel wall and identify
it by its Lagrangian coordinate ζ(ref)

j . As the wall and the free surface deform, the
fluid node remains located at a fixed, predetermined fraction ωj ∈ [0, 1] along its
spine such that the position vector to fluid node j is given by

Rj = Rw(ζ(ref)
j ) + ωj h(ζ

(ref)
j )S(ζ(ref)

j ). (2.11)

We discretize the fluid equations with standard isoparametric Taylor–Hood-type
elements such that the velocities, the global coordinates and the pressure (relative to
the bubble pressure pb) are represented by

ui =
∑
j

Uijψ
(F)
j , xi =

∑
j

Xijψ
(F)
j and p = pb +

∑
j

P jψ
(P )
j , (2.12)

where the ψ(F)
j and ψ

(P )
j are bi-quadratic and bi-linear shape functions in the local

element coordinates, respectively. The reduced order of the pressure interpolation
is required to satisfy the LBB condition (see, e.g., Sani et al. 1981). Xij are the
nodal coordinates, given by (2.11). The free-surface height h(ζ) is discretized by
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one-dimensional isoparametric quadratic elements such that

h =
∑
j

Hjψ
(H)
j and ζ =

∑
j

Z̃ jψ
(H)
j , (2.13)

where Z̃ j = ζ
(ref)
j and the ψ(H)

j are one-dimensional piecewise quadratic shape func-

tions in the local element coordinate. The heights Hj in the fluid-filled region ahead
of the bubble tip are determined by the wall displacement field via Hj = 1− v2(ζ(ref)

j ),

since the fluid domain has to extend up to the channel’s centreline. The height Hjtip

which is associated with the fluid node jtip at the bubble tip is determined by the
requirement that this node remains at the origin, i.e.

Hjtip = hfix = ζ
(ref)
jtip

+ v1(ζ(ref)
jtip

). (2.14)

The remaining heights Hj define the free-surface position and have to be determined
as part of the solution.

The residuals of the momentum equations (2.6) are weighted by the velocity shape
functions ψ(F)

l and the dynamic boundary condition (2.9) is incorporated via partial
integration (Ruschak 1980). This yields

f
(F)
il =

∫∫ [
Re uj

∂ui

∂xj
ψ

(F)
l − (p− pb)∂ψ

(F)
l

∂xi
+

(
∂ui

∂xj
+
∂uj

∂xi

)
∂ψ

(F)
l

∂xj

]
dv

+
1

Ca

∫
ti
∂ψ

(F)
l

∂S
dS − 1

Ca
tiψ

(F)
l

∣∣∣∣x1=0

x1=ζl+v1(ζl )

, (2.15)

where
∫∫

dv is the integral over the computational domain, S is the arclength along
the free surface and ti represents the components of its unit tangent vector. Similarly
the continuity equation (2.7) is weighted with the bilinear pressure shape functions
ψ

(P )
l which yields

f
(P )
l =

∫∫
∂uj

∂xj
ψ

(P )
l dv = 0. (2.16)

Finally, weighting the kinematic free-surface condition (2.8) by the one-dimensional
quadratic shape functions ψ(H)

l provides the equations which determine the unknown
free-surface heights Hj via

f
(H)
l =

∫
uj nj ψ

(H)
l dS = 0. (2.17)

2.3. Fluid–solid coupling

Gaver et al. (1996) reported a non-uniqueness in the Ca(pb) relationship. Therefore
we formulate the fluid–solid coupling such that we can prescribe the capillary number
Ca and obtain the corresponding bubble pressure pb as part of the solution. We use
a Newton–Raphson method to solve the fully coupled system of equations. Hence,
at every stage of the iteration, the latest iterates for the fluid and solid variables are
available.

For a given wall shape, the boundary conditions for the fluid equations are as
follows. On the channel walls, the no-slip condition forces the fluid to move with the
local wall velocity, i.e.

u = −(1 + v1
,ζ , v

2
,ζ) on the wall. (2.18)
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Far ahead of the bubble tip, the wall strain tends to zero (see below) and the wall
approaches its stress-free position at x2 = −1. The corresponding plug flow velocity
profile generates a volume flux of q =

∫
u1 dx2 = −1 = const. We truncate the

Navier–Stokes domain far ahead of the bubble tip at ζ = ζr where ζr is chosen such

that at this point the wall slope β̂ is small enough to allow us to describe the flow

by lubrication theory (which applies at finite Reynolds number provided β̂Re � 1).
Then the inflow velocity profile at ζ = ζr is given by

u1 =
2− 3w + w3 − 3x2

2w

2(w − 1)3
(2.19)

and

u2 = −w
′

2

x2

(
2wx2

2 + 6w − 3w2 − 3 + x2
2

)
(1− w)4

, (2.20)

where w = v2 and w′ = dv2/dζ at ζ = ζr . As ζ → −∞ the film thickness approaches a
constant value which cannot be determined a priori since the wall strain far behind
the bubble is not known – this is an important difference to Gaver et al.’s (1996)
inextensible wall model. We truncate the Navier–Stokes domain behind the bubble
tip at ζ = ζl where the flow has become approximately parallel to the wall. Hence on
the outflow boundary, we set u = u|wall , which is known from (2.18), and leave the film
thickness undetermined. The symmetry boundary condition on the channel’s centreline
requires that u2 = 0 for x2 = 0 and x1 > 0. The stress balance at the free surface
is automatically fulfilled since the dynamic boundary condition has already been
incorporated into the weak form of the momentum equation, (2.15). The weak form
of the kinematic boundary condition, (2.17), provides the equations which determine
the unknown film thickness parameters Hj . Note that it is not possible to directly
prescribe the position of the bubble tip by setting Hjtip = hfix on the spine emanating
from point D in figure 2 as this would not allow us to enforce the kinematic boundary
condition, u · n = 0, at this point. The equation Hjtip = hfix must be treated as the
equation which determines the unknown bubble pressure pb. With these boundary
conditions, the fluid problem is fully specified and we can formulate the boundary
conditions for the solid domain: given the current values of the fluid variables, we
obtain the traction f (in the solid non-dimensionalization) that the fluid exerts on the
wall from

fi = Ca γ

(
pni −

(
∂ui

∂xj
+
∂uj

∂xi

)
nj

)
on the wall, (2.21)

where the non-dimensional surface tension

γ =
γ∗

EH0

(2.22)

represents the ratio of the fluid surface tension to the wall’s extensional stiffness. The
ni are the components of the outer unit normal on the fluid domain. As in Gaver
et al. (1996), we determine the fluid traction on the wall in the regions outside the
Navier–Stokes domains (i.e. for ζ > ζr and ζ < ζl) from lubrication theory (see the
Appendix). To suppress rigid body motions, we set the horizontal wall displacement
at the left end of the computational domain to v1(ζL) = 0.

The coupled system of discretized equations was solved by a Newton–Raphson
method in conjunction with an adaptive continuation technique to perform parameter
variations. The off-diagonal blocks in the Jacobian matrix (which arise from the
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interaction between fluid and solid variables) were generated by finite differencing,
taking advantage of the sparsity of the matrix. Demmel et al.’s (1999) SuperLU
solver with minimum degree ordering of the equations was used to solve the sparse
but poorly structured linear systems. The wall discretization typically extended from
ζL = −300 to ζR = 140 while the Navier–Stokes domain was located between ζl = −40
and ζr = 80. The standard discretization for the parameter studies presented below
involved approximately 4100 degrees of freedom. Selected computations were repeated
with a finer resolution of approximately 6100 degrees of freedom to check the mesh
convergence of the results – see figure 6. Further validations included a study of the
rigid-walled Bretherton problem at zero and finite Reynolds number (Bretherton 1961;
Giavedoni & Saita 1997) and a comparison with Gaver et al.’s (1996) zero Reynolds
number BEM results – see figure 3(a). At the standard resolution, a converged solution
was typically obtained within a few minutes of CPU time on a DEC Alpha 433au
workstation.

The quadratic convergence rate of the Newton–Raphson method and the ability
to adaptively change the parameter increments in regions of rapid change provides a
very robust and efficient computational procedure. However, the method requires the
provision of a good initial guess for all variables. This initial guess was generated by
the following initial sequence of calculations which were performed at zero Reynolds
number: (i) subject the elastic wall to a step pressure distribution which deforms it
into a shape which vaguely resembles the anticipated channel geometry (as sketched
in figure 1); (ii) keeping the wall shape from step (i) fixed, compute the fluid flow
in the channel. For this calculation an initial guess for the position of the air–liquid
interface is required. This was provided by using an initial fluid domain, in which
a region of constant film thickness far behind the bubble tip was smoothly merged
to the bubble tip whose shape was approximated by a circular arc; (iii) perform a
fully coupled calculation in which the traction on the wall is slowly changed from
the prescribed pressure (from step (i)) to the actual fluid traction. At the end of this
calculation, we obtain a configuration in which the traction generated by the fluid
flow in the deformed channel exactly balances the elastic restoring forces and thus
keeps the system in overall equilibrium. This configuration was used as the initial
guess for all subsequent parameter variations.

3. Results
Unless stated otherwise all results were obtained using parameter values which

correspond to Gaver et al.’s (1996) ‘basic state’ in which the ratio η of wall tension
to surface tension is

η =
T

γ∗
=
σ0h0

γH0

= 100 (3.1)

and the ratio of spring stiffness to surface tension forces is

Γ =
K∗H2

0

γ∗
=
K

γ
= 0.5. (3.2)

To facilitate comparisons with Gaver et al.’s (1996) wall model (which did not include
bending stiffness) we use a small wall thickness h0/H0 = 5 × 10−4 which ensures
that bending effects are relatively unimportant. The effect of variations in the wall
thickness will be discussed in § 3.3.3.
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Figure 3. Channel width W versus non-dimensional bubble speed Ca = Uµ/γ∗. (a) The FEM
predictions compared to Gaver et al.’s (1996) BEM computations and the results from their
lubrication theory analysis. In all cases, Gaver et al.’s (1996) wall equations and velocity boundary
conditions were used. (b) The predictions from the Lagrangian wall model for various values of
the non-dimensional surface tension γ = γ∗/(EH0) compared to the predictions from Gaver et al.’s
(1996) Eulerian wall model. Re = 0, η = 100, Γ = 0.5.

3.1. Zero Reynolds number flows

In order to validate the newly developed code, we first repeated selected computations
from Gaver et al.’s (1996) study. For this purpose we suppressed the longitudinal
displacement by setting v1 = 0 and changed the variational expressions in (2.2) such
that the corresponding Euler Lagrange equations represented Gaver et al.’s (1996)
wall equations. Furthermore, we changed the velocity boundary conditions (2.18) to
those used by Gaver et al. (1996), namely

u = (n2
1 − 1, n1n2) on the wall. (3.3)

Figure 3(a) shows the resulting predictions for the channel width W far behind the
bubble tip as a function of the non-dimensional bubble speed Ca = Uµ/γ∗. The
solid line and the symbols represent the predictions from the current FEM code
and from Gaver et al.’s (1996) BEM computations, respectively. The dotted line
represents the results from Gaver et al.’s (1996) lubrication theory model which is
asymptotically valid in the small-Ca regime. We observe excellent agreement between
the three models in their joint regions of validity. Note the two-branch behaviour of
the W,Ca characteristics: In the low-Ca regime, all models predict a negative slope
for the W,Ca curve. Since, for constant Γ , the channel width W is proportional to
the bubble pressure pb, this implies that in this regime a decrease in bubble pressure
pb is required to increase the bubble speed U. This is contrary to physical expectation
and to the experimental findings. Gaver et al. (1996) speculate that this solution
branch is unstable. For sufficiently large Ca, the slope of the W,Ca curve becomes
positive and represents the physically expected behaviour. Figure 4 shows the shapes
of the fluid domains and the corresponding streamlines for four different values of
Ca. The contours represent the fluid pressure on the capillary pressure scale which
is the relevant scale for the wall deformation; see (2.21). These plots illustrate the
different behaviour of the system on the two solution branches. For small Ca, a large
volume of fluid is being ‘pushed’ ahead of the bubble and a closed vortex develops
inside the relatively stagnant fluid region just ahead of the bubble tip (see figure 9
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for a representative illustration of the distribution of the absolute velocity). As Ca
increases, the length of the transition region over which the channel width adjusts
itself to the uniform value far ahead of the bubble tip is reduced: For large Ca, the
bubble appears to ‘peel’ the wall off the fluid layer ahead of the bubble tip. This
motivated Gaver et al. (1996) to introduce the terms ‘pushing’ and ‘peeling’ for the
system’s behaviour in these two regimes. Notice that figure 4 shows the presence of a
‘neck’ in the fluid domain near the end of the transition region ahead of the bubble
tip. The pressure contours show that at this point, the walls are pulled inwards by a
large negative fluid pressure. Gaver et al.’s (1996) asymptotic analysis of the system’s
behaviour far ahead of the bubble tip shows that this ‘neck’ is generated by the
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first (and hence largest) maximum of the damped oscillatory eigensolution for the
vertical wall displacement field (see the Appendix). In all cases, the transverse pressure
gradient remains small, even in the non-parallel flow region near the bubfle tip.

Figure 3(b) shows a comparison between Gaver et al.’s (1996) predictions for the
W,Ca relationship and the results obtained from the Lagrangian wall model. Recall
that in the Lagrangian wall model, the wall tension is not assumed to be constant
but is allowed to vary in response to the traction that the fluid exerts on it. Since the
ratio of wall pre-stress to surface tension is kept at a constant large value of η = 100,
the flow-induced variation in the wall tension is relatively small – as it should be if
the incrementally linear constitutive equations used in the Lagrangian wall model are
to hold. Consequently, there is good qualitative agreement between the models, both
of which predict the two-branch behaviour discussed earlier.

In order to elucidate the origin of the discrepancies between the models, figure 5
shows the wall shapes and the corresponding incremental wall strain distribution in
the vicinity of the bubble tip. All solutions correspond to Ca values on the ‘peeling’
branch. The fluid flow far ahead of the bubble tip approaches a plug flow profile
and the wall shear stress tends to zero as x1 → ∞. Consequently, the flow-induced
variation of the wall tension tends to zero as well and the wall tension approaches
the pre-stress σ0 which is generated by the force applied at the ‘right-hand end’ of
the wall. Hence the incremental stress and strain both tend to zero as x1 → ∞. Far
behind the bubble tip, the incremental strain is determined by the overall balance of
forces which requires that (in dimensional terms)

p∗b W
∗ = h0 εE + γ∗. (3.4)

On the ‘peeling’ branch, both bubble pressure p∗b and airway width W ∗ increase with
Ca, therefore the wall tension far behind the bubble tip has to increase via an increase
in the incremental strain ε. It is interesting to observe that the incremental wall strain



Propagation of an air finger into a flexible-walled channel 33

12

11

10

9

8

7

6

5

0 0.5 1.0 1.5 2.0

Ca

W

Re/Ca=0.0
2.5
5.0
7.5

10.0
10.0 (refined mesh)

Figure 6. Channel width W versus the non-dimensional bubble speed Ca = Uµ/γ∗ for various
values of Re/Ca. The lines represent the data obtained with the standard resolution. The symbols
on the Re/Ca = 10 curve represent data points obtained with a finer spatial resolution. η = 100,
Γ = 0.5.

ε in the vicinity of the ‘neck’ region is negative. This indicates that the fluid traction
on the wall in this region leads to a slight reduction in the wall tension.

Note that in the Lagrangian wall model, the change in wall tension not only
affects the local balance of forces in the wall, but it also affects the velocity boundary
conditions for the fluid since, in the travelling wave frame, the fluid velocity varies
with the wall strain (see (2.18)). This effect is responsible for the influence of the
non-dimensional surface tension γ on the W,Ca curves. Note that γ = γ∗/(H0E)
can be expressed in terms of the wall tension parameter η as γ = σ∗0h0/(H0ηE).
This shows that for parameter variations in which the ratio of wall pre-stress and
surface tension, η, is kept constant, large values of γ correspond to small values of
the incremental elastic modulus E. Smaller values of E require larger incremental
strains, ε, to generate the wall tension increment required by the overall force balance
(3.4). Therefore, large values of γ induce large strain-induced variations of the fluid
velocity on the wall. Since the latter effect is absent in Gaver et al.’s inextensible wall
model, the discrepancy between the two models increases with γ. This can clearly be
seen in figure 3(b) which also shows that an increase in γ leads to a slight reduction
in the bubble pressure required to drive the bubble at a given speed.

When comparing the two wall models, it should be noted that even for large
η (corresponding to small flow-induced variations in the wall tension) and γ → 0
(corresponding to an increasingly inextensible wall), we do not obtain perfect
agreement because of the different velocity boundary conditions, (2.18) and (3.3),
respectively, used in the two models.

Finally, note that self-consistency of the Lagrangian wall model requires ε� 1 to
justify the use of the incrementally linear constitutive equation. An examination of the
maximum incremental wall strains for the parameter range illustrated in figure 3(b)
confirms that ε scales inversely with γ. For γ = 10−7 we have εmax = O(10−3) within
the parameter range considered in that figure. We use this value for all subsequent
parameter studies.
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3.2. Finite Reynolds number flows

We will now investigate the effects of fluid inertia on the system’s behaviour. Note
that in an experiment in which the bubble speed U is controlled by varying the
bubble pressure pb, the ratio of the two fluid dynamical parameters, Ca = Uµ/γ∗ and
Re = UρH/µ, remains constant and is given by

Re

Ca
=
ρHγ∗

µ2
(3.5)

since both quantities scale linearly with U. Figure 6 shows the channel width, W , far
behind the bubble tip versus the non-dimensional bubble speed Ca = Uµ/γ∗ for zero
and finite fluid inertia. The ratio Re/Ca is kept constant along the different curves,
hence on all curves inertial effects become negligible on the ‘pushing’ branch where
Ca and Re → 0. On the ‘peeling’ branch, an increase in Ca is accompanied by a
proportional increase in Re. Figure 6 shows that even for moderate values of Re/Ca,
the pressure pb required to drive the air finger at a given speed increases significantly
compared to the zero Reynolds number case. Figure 7 shows the corresponding
flow fields and the fluid pressure distributions for different values of Ca and for
Re/Ca = 10: with an increase in bubble speed U we observe a reduction in the length



Propagation of an air finger into a flexible-walled channel 35

0.7

0.6

0.5

0.4

0.3

0.5 1.0 1.5 2.0

0.2

0.18

0.16

0.14

0.12

1.0 1.5 2.00.5

kα

Re/Ca=0
5

10

0.35

0.30

0.25

0.20

0.15

0.10
0.5 1.0 1.5 2.0

Ca
0.5 1.0 1.5 2.0

Ca

22

18

14

10

DA

x2=–1

x1=xneck

D

A

Figure 8. The four parameters characterizing the wall displacement field ahead of the bubble tip:
A, α and λ are the amplitude, wavenumber and decay rate of the wave pattern. D is the distance
between the ‘neck’ and the bubble tip. η = 100, Γ = 0.5.

of the transition region ahead of the bubble tip, a convenient measure of which is
given by the distance D between the bubble tip and the position of the ‘neck’, as
illustrated in the sketch in figure 8. Furthermore, figure 7 shows that the amplitude
and wavenumber of the damped oscillatory wall displacement field ahead of the
bubble tip increase with U. To some extent, these effects are already present at zero
Reynolds number (see figure 4) but fluid inertia significantly enhances them. This is
demonstrated in figure 8 which displays the four main parameters which characterize
the wall displacement field ahead of the bubble tip: A, α and λ are the amplitude,
wavenumber and decay rate of the wall displacement field which were obtained by
approximately fitting the wall shape in this region to the function

x
(wall)
2 = −1 + A e−λ(x1−xneck) cos (α(x1 − xneck)). (3.6)

Figure 8 shows that the wavenumber α increases with the bubble speed – more rapidly
so for larger values of Re/Ca. For zero Reynolds number, an increase in bubble
speed leads to an increase in the decay rate λ. This effect is reduced and finally
reversed as Re/Ca increases. Finite Reynolds numbers also lead to a significant
increase in the wave amplitude A and hence to an increased narrowing of the channel
in the ‘neck’ region. It is interesting to note that similar effects have been reported
in Christodoulou & Scriven’s (1989) study of finite Reynolds number effects in free-
surface coating flows. The length D of the transition region initially decreases with
an increase in flow speed (more rapidly at larger Re/Ca) but for sufficiently large
Re/Ca it increases again at larger flow speeds.



36 M. Heil

11

10

9

8

7

6

5

50 100 150 200 250

W

è

(a)

50 100 150 200 250
è

(b)6

5

4

3

2

¼tot

Re=0
5

10
12.5

15

Figure 10. The channel width W and the total dissipation Φtot versus the wall tension parameter η
for various values of Re and for Ca = 2.0, Γ = 0.5.

The streamlines in figure 7 suggest two potential mechanisms to explain the strong
effect of fluid inertia on the system’s behaviour: (i) at finite Reynolds number, the
large streamline curvature near the bubble tip requires larger pressures to deflect the
oncoming fluid (in the moving frame of reference) around the bubble tip; (ii) the
pressure drop associated with the Bernoulli effect in the ‘neck’ region is responsible
for the further narrowing of the channel which causes increased viscous dissipation.
Note that both of these mechanisms are self-sustaining and are therefore consistent
with the increasingly rapid growth in W with an increase in flow speed shown in
figure 6: an increase in pb (however caused) widens the channel behind the bubble tip
and thus increases the streamline curvature further; similarly, the pressure-induced
narrowing of the ‘neck’ region further enhances the Bernoulli effect and the viscous
dissipation in the neck region, potentially leading to the occurrence of ‘flow limitation’
which is well known in collapsible tube theory (Kamm & Pedley 1989).

To assess the relevance of the two proposed mechanisms, figure 9 (p. 38) shows a
detailed picture of the flow fields near the bubble tip for Re/Ca = 10. The streamlines
are now plotted on top of the contours of the absolute velocity and the axis ratio in
all three plots is 1:1 so that the true streamline curvature is shown. At small Reynolds
number, the flow through the gently varying ‘neck’ region exhibits all the features
suggested by lubrication theory. The velocity profile is approximately parabolic and
adjusts itself immediately to the local channel width. The closed vortex ahead of the
bubble tip is located in a fairly stagnant flow region. As the bubble velocity increases,
fluid inertia begins to manifest itself. Even though the wall shape in the ‘neck’ region
remains fairly symmetric, the flow field develops a distinct upstream/downstream
asymmetry. To the right of the ‘neck’, the fluid in the core resists the acceleration; to
the left of the ‘neck’, the high-velocity fluid on the channel’s centreline maintains its
momentum past the ‘neck’ region and impinges on the stagnant flow region ahead of
the bubble tip. Note that in all cases, significant fluid velocities are only encountered
in the neck region and in two relatively thin layers near the walls. The most strongly
curved streamlines are located in regions of small absolute velocities which suggests
that, at least for the cases shown in figure 9, finite Reynolds number effects are
mainly due to mechanism (ii). This is consistent with figure 7 which shows that even
at relatively large Re, the pressure remains approximately constant across the width
of the channel. Nevertheless, at higher Reynolds numbers, a pressure rise towards the
bubble tip can be detected – see the insert in figure 7. This pressure rise is caused by
the streamline curvature in this region and leads to a reduction in interface curvature
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near the bubble tip. For sufficiently large Re (and/or sufficiently low wall tension; see
below) this inertially caused pressure rise can become strong enough for the interface
curvature near the bubble tip to become negative: The high-velocity fluid emanating
from the ‘neck’ region impinges on the bubble tip and makes the interface ‘bulge
out’. This effect is responsible for the increase in D at sufficiently large Re observed
in figure 8.

3.3. Variations of the wall parameters

Gaver et al. (1996) studied the system’s behaviour in response to changes in the wall
parameters η and Γ . We will now investigate how the system’s behaviour for such
parameter variations is affected by fluid inertia.

3.3.1. Variations in the wall tension

Figure 10(a) shows the channel width, W , far behind the bubble tip as a function
of the dimensionless wall tension, η, for Ca = 2.0. The different curves correspond to
different values of Re. The figure shows that for any given value of η, an increase in
Re increases the channel width W , as observed previously.

The main effect of an increase in wall tension is a smoothing of the wall displace-
ment field which increases the streamwise lengthscale, as shown in figure 11. This
reduces the wavenumber α and the decay rate λ of the damped oscillatory wall dis-
placement field ahead of the bubble tip. The increase in lengthscale also increases the
length D of the transition region ahead of the bubble tip. Since this is the main region
in which significant velocity gradients are present, Gaver et al. (1996) suggested that
(at zero Reynolds number) an increase in D is likely to increase the overall viscous
dissipation in the system which could explain the increase in bubble pressure pb (and
hence W ), required to drive the bubble at a given speed, as η increases. To test Gaver
et al.’s (1996) hypothesis, figure 10(b) shows the total non-dimensional dissipation in
the vicinity of the bubble tip,

Φtot =

∫
ζl<ζ<ζr

(
∂ui

∂xj
+
∂uj

∂xi

)2

dV , (3.7)

as a function of the non-dimensional wall tension. The close correlation between
the bubble pressure and the total dissipation strongly supports Gaver et al.’s (1996)
interpretation of the results.

Figure 10(a) also shows that fluid inertia can lead to an interesting change in
the W (η) characteristics: for sufficiently small wall tension and sufficiently large Re,
W increases with a reduction in η. A detailed analysis of the corresponding flow
fields, shown in figures 11(c, d), shows that this is caused by the following mechanism.
As the wall tension is reduced, the transition region shortens and moves the ‘neck’
closer to the bubble tip. This strongly enhances the inertial effects via mechanism (ii)
because it increases the streamline curvature ahead of the bubble tip and moves the
most strongly curved streamlines into regions of larger absolute velocities. A strong
adverse pressure gradient towards the bubble tip develops and makes the air–liquid
interface ‘bulge out’ while the width of the transition region increases significantly.
The combination of these two effects leads to a significant increase in the total
dissipation Φtot which increases the bubble pressure pb required to drive the bubble
at the given speed. Further parameter studies (not shown here) were carried out to
investigate the effect of Ca on this mechanism. As shown in figure 4, a decrease in Ca
increases the axial lengthscale of the wall deformation. Therefore, smaller Ca values
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Figure 11. Streamlines and contours (on the capillary pressure scale) for Ca = 2.0,
Γ = 0.5, and various combinations of Re and the wall tension η.
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require smaller values of η (or larger values of Re) to initiate the change in the W (η)
characteristics observed in figure 10(a).

It is interesting to note that the streamlines in figure 11(c) indicate that, despite the
rapid expansion of the channel in the vicinity of the ‘neck’ region and the presence of
a strong adverse pressure gradient towards the bubble tip, the moving walls prevent
flow separation: The fluid which emanates from the centre of the ‘neck’ region appears
to ‘detach’ from the wall and is only deflected sideways when it impinges on the bub-
ble tip. However, the moving wall forces the fluid in the thin layer close to the walls
to maintain its velocity and thus prevents the development of a recirculation bubble
which would almost certainly form if the walls were stationary. It should be noted that
the flow field shown in figure 11(c) is very likely to be unstable to non-symmetric per-
turbations which would force the flow to attach itself to one side of the channel. How-
ever, the investigation of non-symmetric solutions is beyond the scope of this paper.

3.3.2. Variations in the spring stiffness

Figure 12 illustrates the system’s behaviour in response to changes in the non-
dimensional spring stiffness Γ : a reduction in spring stiffness increases the channel
width W but it also reduces the bubble pressure required to maintain the same
bubble speed. Gaver et al. (1996) observed this behaviour at zero Reynolds number
and figure 12 shows that fluid inertia only has a quantitative effect in that increasing
Re increases the bubble pressure and the wall separation. Figure 13 shows that
variations in the spring stiffness only have a noticeable effect in the region to the
left of the ‘neck’: A reduction in spring stiffness reduces the rate at which the wall
approaches its equilibrium position as x1 → −∞. It also shortens the length D of the
transition region ahead of the bubble tip; further parameter studies (not shown here)
showed that the latter effect is more pronounced at smaller Ca. Gaver et al. (1996)
suggest that, as in the analysis of variations of the wall tension, this reduction in D
reduces the total viscous dissipation in the fluid. This explains why a reduction in
spring stiffness reduces the bubble pressure pb required to maintain the same bubble
speed. In the parameter range considered in the present study, the reduction in D was
never sufficient to increase the inertial effects to such an extent that they lead to an
increase in pb at small values of Γ as in the case of a reduction in η.

In contrast to the significant changes to the wall displacement field behind the
bubble tip, the damped oscillatory wall displacement field ahead of the ‘neck’ remains
virtually unaffected by changes to the spring stiffness: an increase in Γ slightly
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reduces its amplitude A (more rapidly at smaller Ca) but for all Reynolds numbers,
its wavenumber α and decay rate λ are practically independent of Γ .

3.3.3. Variations in γ and h0/H0

Within their physically relevant ranges, variations of the non-dimensional surface
tension, γ, and the non-dimensional wall thickness, h0/H0, only have a minor effect
on the system’s behaviour. The variations in response to changes in γ, shown in figure
3 (for Re = 0) are also representative of the behaviour at finite Reynolds number. An
increase in wall thickness increases the wall’s bending stiffness and slightly increases
the bubble pressure pb required to drive the bubble at a given speed. The effect is
more pronounced in cases where the streamwise lengthscale of the wall deformation
is relatively short (i.e. for larger values of Ca) but the effect on the pb(Ca) relation
remains fairly small. For instance, for Ca = 2.0, Γ = 0.5, η = 100 an increase from
the standard value of h0/H0 = 5 × 10−4 to h0/H0 = 1/10 only increases pb by 3.5%
for Re = 0 and by 3.0% for Re = 15.

4. Discussion
To assess the significance of the above results in the context of the airway reopening

problem, we will now provide estimates for the relevant parameter values in the typical
benchtop experiments (Gaver et al. 1990 and Perun & Gaver 1995) and in the lung
airways. The most important parameter in the present study was shown to be the
ratio of the Reynolds and capillary numbers, which depends strongly on the viscosity
of the fluid; see (3.5). Table 1 shows that for the experiments with gear oil, Re/Ca is
indeed small enough to justify the neglect of fluid inertia. However, the present results
suggest that inertial effects might have played a role in the experiments with some
of the other fluids, particularly with polyethylene glycol. It is interesting to note that
Perun & Gaver’s (1995) experimental reopening pressures, pb(Ca), are generally above
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ρ γ∗ H0 µ
Medium [reference] [kg m−3] [dyn cm−1] [mm] [dyn s cm−2] Re/Ca

85W gear oil [GS&S] 930 25.0 0.83 9.9 0.02
85W gear oil [P&G] 930 30.9 0.83 7.4 0.04
10W30 motor oil [GS&S] 890 24.7 0.83 1.5 0.81
10W30 motor oil [P&G] 890 28.4 0.83 0.72 4.04
Polyethylene glycol [GS&S] 1140 42.4 0.83 1.1 3.31
Polyethylene glycol [P&G] 1140 45.3 0.83 0.83 6.24
Lung fluid in collapsed bronchioli [H&G] 1000 20.0 0.025 0.01 500

Table 1. Re/Ca for typical laboratory experiments with viscous fluids and for lung fluid in
a collapsed airway. References: [P&G] = Perun & Gaver (1995), [GS&S] = Gaver et al. (1990),
[H&G] = Halpern & Grotberg (1992).

the values obtained from Gaver et al.’s (1996) zero Reynolds number computations. A
direct comparison, provided in Jensen et al. (2000), shows that the difference between
the computational data (at zero Reynolds number) and the experimental data is of
the same order of magnitude as the pressure difference due to fluid inertia shown in
figure 6.

Airway closure in the lung tends to occur in the peripheral parts of the bronchial
tree in which the lung fluid has water-like properties (Grotberg 1994). We consider
airway reopening in the terminal bronchioli and assume that airway closure has
collapsed them to a width H0 which is equal to 1/10 of their undeformed radius a.
Using the data provided by Halpern & Grotberg (1992), a = 2.5× 10−2 cm, we obtain
a surprisingly large value of Re/Ca = 500. Considering possible variations of the
parameter values, we see that a surfactant-induced reduction in surface tension (by a
factor of 2–3; Halpern & Grotberg 1993) would lead to a proportional reduction in
Re/Ca; moving into the larger airways would increase Re/Ca in proportion to the
airway radius. The value of Re/Ca in the lungs certainly appears to be large enough
for inertial effects to be potentially significant in airway reopening.

Lung airways tend to have a greater non-dimensional wall thickness h0/H0 than the
channels considered in this study or the very thin-walled tubes used in the experiments.
However, the parameter variations discussed in § 3.3.3 suggest that variations in the
wall thickness only have a very moderate effect on the results and will not significantly
affect the system’s qualitative behaviour.

A concern regarding the applicability of the present results to airway reopening
in the lungs arises from the difference in the spatial dimension between the model
problem and the three-dimensional lung airways. In a two-dimensional model there
is no fundamental difference between ‘inflated’ and ‘collapsed’ states since an overall
increase in the fluid pressure results in a uniform expansion of the channel – this can
be accommodated by an appropriate rescaling of the variables, as indicated in the in-
troduction. Hence, in a two-dimensional model, the transmural pressure in the liquid-
filled, collapsed part of the channel far ahead of the bubble tip, ptm(∞) = (p− pext) |x1→∞,
is irrelevant – we arbitrarily set it to zero. This is in contrast to the three-dimensional
system in which the airway radius R0 provides a natural transverse lengthscale: in
three dimensions, a change in transmural pressure is not equivalent to a simple
change in the transverse lengthscale. In the experimental or physiological realization
of airway reopening, pext and pb are imposed while the bubble velocity and ptm(∞) are
allowed to adjust themselves. In this situation ptm(∞) is one of the most important
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parameters: if ptm(∞) = 0 (the case chosen here) then far ahead of the bubble tip
the tube is undeformed. Hence, the propagating air finger would not reopen a non-
axisymmetrically collapsed tube but merely inflate an axisymmetric tube even further.
Clearly, this is not representative of the situation in airway reopening which requires
ptm(∞) to be sufficiently negative so that the fluid-filled part of the tube is buckled
non-axisymmetrically. The extension of the computational model to three dimensions,
which will allow this problem to be properly investigated, is currently in progress.

From an analytical point of view, it will be interesting to further analyse the mecha-
nism governing the pronounced changes to the wave pattern in the wall displacement
field ahead of the bubble tip as the Reynolds number increases. The fact that the
computational results show that the pressure distribution ahead of the bubble tip is
approximately uniform across the channel suggests that a long-wavelength analysis,
similar to that used by Christodoulou & Scriven (1989) might be appropriate.

An anonymous referee pointed out that the wave pattern ahead of the bubble
tip has some similarity to the waves that appear ahead of an elastic jump in the
supercritical region of flow through a collapsible tube. McClurken et al.’s (1981)
analysis of the latter problem showed that these waves can be regarded as travelling
waves which emanate from the expansion region and become trapped because their
local phase speed is equal (and opposite) to the fluid velocity. McClurken et al.’s
(1981) analysis predicts a decrease in the wavelength with an increase in the flow
velocity. Figure 8 shows that this is qualitatively consistent with the present results.

The author would like to thank Don Gaver, Oliver Jensen and David Halpern
for many helpful and enjoyable discussions and for providing him with a preprint
of Jensen et al. (2000) as well as the data for the comparison of the two wall
models in figure 3(a). Further thanks are due to Francoise Tisseur for drawing the
author’s attention to Demmel et al.’s (1999) SuperLU solver and for her help with its
installation. Financial support from the EPSRC is gratefully acknowledged.

Appendix. Lubrication theory and the end conditions at x1 → ±∞
Far ahead of the bubble tip, the walls become nearly parallel so that the fluid

flow can be described by lubrication theory. Furthermore, the wall strain becomes
so small that dζ ≈ dx1. Hence, the non-dimensional pressure gradient (in the wall
non-dimensionalization) in this region is given by

dp

dζ
= 3Ca γ

v2

(1− v2)3
. (A 1)

Equation (A 1) was used to determine the fluid pressure in the region ζ > ζr ahead of
the Navier–Stokes domain. Correspondingly, the wall shear stress in this region was
obtained from

τw = −3Ca γ
v2

(1− v2)2
. (A 2)

The finite element discretization of the wall itself is truncated at a finite distance ahead
of the bubble tip, at ζ = ζR . For small Ca, the wall remains inflated over a large
distance ahead of the bubble tip. In order to truncate the computational domain at
reasonable distances, the effect of the domain in the region ζ > ζR was incorporated
by representing the wall displacement field at large distances by the appropriate
decaying eigenfunctions. For this purpose we chose ζR to be large enough to ensure
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that the derivatives of the wall displacements at ζ = ζR have become small. Then the
linearized forms of the variational expressions for the vertical wall displacement,

φ
(0)
2 = p+Kv2, φ

(1)
2 = γ η v2

,ζ and φ
(2)
2 =

1

12

(
h0

H0

)3

v2
,ζζ (A 3)

are valid. We derive the corresponding Euler Lagrange equation, differentiate it with
respect to ζ and substitute the linearized form of the lubrication theory pressure
gradient from (A 1). This yields a fifth-order ODE with constant coefficients for v2.
Only three roots, Λ, of the characteristic polynomial

1

12

(
h0

H0

)3

Λ5 − γηΛ3 + ΓγΛ+ 3γ Ca = 0 (A 4)

have negative real part. The decaying eigenfunction for the vertical wall displacement
can be shown to have the form

v2 = C1 e−θζ + e−λζ (C2 cos (αζ) + C3 sin (αζ)) , (A 5)

where θ � λ > 0. Compared to Gaver et al.’s (1996) analysis, we have one additional
rapidly decaying eigensolution (associated with θ) which arises from the bending
stiffness in the system.

To incorporate these eigensolutions into the finite element solution of the wall
equations, we express the coefficients C1, C2 and C3 in (A 5) in terms of the vertical
displacement and its first and second derivatives at the right-hand end of the com-
putational domain (at ζ = ζR). The finite element representation of the displacement
field (2.3) allows us to express C1, C2 and C3 in terms of the discrete displacements
V ijk . We split the domain of integration in the variational equation (2.2) into three
parts such that ∫ ∞

−∞
δφ dζ =

∫ ζL

−∞
δφ dζ +

∫ ζR

ζL

δφ dζ +

∫ ∞
ζR

δφ dζ = 0. (A 6)

The second integral has already been discretized. The variational terms in the third
integral can be approximated by the linearized expressions (A 3) and the eigen-
solution (A 5) determines their spatial variation. Hence the integral can be evaluated
analytically (using maple) and the variations become variations with respect to the
discrete displacements V ijk . Collecting the terms which are multiplied by the same
δV ijk provides the corresponding end terms Φijk in (2.5).

The non-zero wall shear stress in the region ζ > ζR implies that the wall tension at
ζ = ζR is not equal to the asymptotic value σ0: a global balance of forces shows that

σ |ζ=ζR = σ0 +

(
H0

h0

p(1− v2)

) ∣∣∣∣
ζ=ζR

. (A 7)

The work done by a virtual horizontal displacement δv1 at the right-hand end of the
domain is given by (σ δv1)|ζ=ζR . Again, we use the finite element representation (2.3)
to express δv1 in terms of the variations of the discrete displacements, δV ijk , which
allows us to identify the remaining end-terms Φijk in (2.5).

Far behind the bubble tip, the Navier–Stokes domain is truncated at ζ = ζl and the
fluid traction on the wall in the region ζL < ζ < ζl was determined from a thin-film
lubrication theory approximation similar to Gaver et al. (1996). The computational
studies revealed that as ζ → −∞, the film thickness approaches its final value much
more rapidly than the vertical wall displacement v2. This motivated the following
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approximation which was found to produce perfectly acceptable results: the fluid
traction on the wall in the region ζ < ζl was assumed to be constant and equal to
the value at the left-hand end of the Navier–Stokes domain at ζ = ζl; furthermore, a
value of ζL = −300 was found to be sufficient to resolve the approach of the vertical
wall displacement v2 to its final value v2 → W − 1, which allowed us to completely
neglect the contribution from the first integral in (A 6).
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